Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest New Drugs ; 38(2): 350-359, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31124054

RESUMO

Intrinsic chemoresistance is the main reason for the failure of human pancreatic ductal adenocarcinoma (PDAC) therapy. To identify the candidate protein, we compared the protein expression profiling of PDAC cells and its distinct surviving cells following primary treatment with gemcitabine (GEM) and 5-fluorouracil (5-FU) by two-dimensional electrophoresis combined with liquid chromatography-mass spectrometry or mass spectrometry. A total of 20 differentially expressed proteins were identified, and annexin A1 (ANXA1) was analyzed for further validation. The functional validation showed that the downregulation of ANXA1 contributes to GEM and 5-FU resistance in PDAC cells through protein kinase C/c-Jun N-terminal kinase/P-glycoprotein signaling pathway. Our findings provide a platform for the further elucidation of the underlying mechanisms of PDAC intrinsic chemoresistance and demonstrated that ANXA1 may be a valid marker for anticancer drug development.


Assuntos
Anexina A1 , Biomarcadores Tumorais , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/uso terapêutico , Neoplasias Pancreáticas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Regulação para Baixo , Feminino , Fluoruracila/farmacologia , Humanos , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Gencitabina
2.
Cell Death Dis ; 10(1): 2, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30578411

RESUMO

CUL1 is an essential component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex. Our previous study has showed that CUL1 is positively associated with poor overall and disease-specific survival of breast cancer patients. Here, we further explored its roles in breast cancer metastasis. Our data showed that CUL1 significantly promoted breast cancer cell migration, invasion, tube formation in vitro, as well as angiogenesis and metastasis in vivo. In mechanism, the human gene expression profiling was used to determine global transcriptional changes in MDA-MB-231 cells, and we identified autocrine expression of the cytokines CXCL8 and IL11 as the target genes of CUL1 in breast cancer cell migration, invasion, metastasis, and angiogenesis. CUL1 regulated EZH2 expression to promote the production of cytokines, and finally significantly aggravating the breast cancer cell metastasis and angiogenesis through the PI3K-AKT-mTOR signaling pathway. Combined with the previous report about CUL1, we proposed that CUL1 may serve as a promising therapeutic target for breast cancer metastasis.


Assuntos
Comunicação Autócrina , Neoplasias da Mama/metabolismo , Proteínas Culina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-11/biossíntese , Interleucina-8/biossíntese , Proteínas de Neoplasias/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas Culina/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-11/genética , Interleucina-8/genética , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/genética
3.
Oncotarget ; 8(65): 109382-109392, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312615

RESUMO

X-ray repair cross-complementing group 1 (XRCC1) is a major DNA repair gene that is responsible for fixing DNA base damage and single-strand breaks by interacting with DNA components at the damage site. This study explored the clinical significance of XRCC1 in human clear cell renal cell carcinoma (ccRCC) and further examined the mechanism of the role of XRCC1 in ccRCC. The clinical relevance of XRCC1 in ccRCC was evaluated using tissue microarrays and immunohistochemical staining of two independent human ccRCC cohorts. Our data demonstrated that XRCC1 expression was dramatically decreased in ccRCC tissues compared with that in normal renal tissues and paired adjacent non-tumor tissues. Low XRCC1 expression was significantly correlated with lymph node metastasis and with worse overall and disease-specific survival in patients, as determined by log-rank tests. However, Cox regression analysis revealed that XRCC1 expression was not an independent prognostic factor in ccRCC patients. Furthermore, XRCC1 suppressed ccRCC migration and invasion by inhibiting MMP-2 and MMP-9 expression through the regulation of TIMP-2 and TIMP-1. These findings indicated that decreased XRCC1 expression was associated with lymph node metastasis but was not an independent prognostic factor in ccRCC patients. XRCC1 may serve as a potential therapeutic target for inhibiting ccRCC metastasis but cannot be used as an independent prognostic factor.

4.
Oncotarget ; 7(40): 66267-66275, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27556185

RESUMO

PIN2/TRF1-interacting telomerase inhibitor 1 (PinX1) is a novel cloned gene located at human chromosome 8p23, playing a vital role in maintaining telomeres length and chromosome stability. It has been demonstrated to be involved in tumor genesis and progression in most malignancies. However, some researches showed opposing molecular status of PinX1 gene and its expression patterns in several other types of tumors. The pathogenic mechanism of PinX1 expression in human malignancy is not yet clear. Moreover, emerging evidence suggest that PinX1 (especially its TID domain) might be a potential new target cancer treatment. Therefore, PinX1 may be a new potential diagnostic biomarker and therapeutic target for human cancers, and may play different roles in different human cancers. The functions and the mechanisms of PinX1 in various human cancers remain unclear, suggesting the necessity of further extensive works of its role in tumor genesis and progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Telomerase/antagonistas & inibidores , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Proteínas Supressoras de Tumor/genética
5.
J Cancer Res Clin Oncol ; 139(11): 1813-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002642

RESUMO

PURPOSE: To evaluate the role of RUNX3 in breast cancer pathogenesis, we examined the RUNX3 expression in breast cancer tissues and analyzed the correlation between RUNX3 expression and clinicopathologic variables and patients survival. METHODS: We evaluated the RUNX3 expression by immunohistochemistry using a tissue microarray containing 256 specimens of breast cancer patients. We also studied the role of RUNX3 in cell migration and invasion by performing cell migration and invasion assay. Differential expression of metastasis-related genes after RUNX3 restoration was analyzed using the Human Tumor Metastasis PCR Array. RESULTS: The RUNX3 expression was significantly correlated with breast cancer histology grade (P = 0.000), and low RUNX3 expression strongly correlated with worse 5-year overall and disease-specific survival rates (P = 0.000 and P = 0.001, respectively). Furthermore, we found that RUNX3 restoration suppressed breast cancer metastasis by controlling cell migration and invasion capacity. Finally, gene expression profiles of RUNX3-549 and Ctrl-549 cells showed matrix metalloproteinase-2 (MMP-2) was the most significant gene among the 84 metastasis-related genes influenced by RUNX3 reintroduction. CONCLUSIONS: Reduced RUNX3 expression is significantly correlated with breast cancer progression and predicts worse survival. RUNX3 regulates breast cancer cell migration and invasion through the MMP-2 pathway.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Células MCF-7 , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/metabolismo , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Gradação de Tumores , Prognóstico , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...